Поперечная остойчивость. Элементы начальной поперечной остойчивости Поперечный метацентр

Судна его продольная остойчивость значительно выше поперечной, поэтому для безопасности плавания наиболее важно обеспечить надлежащую поперечную остойчивость.

  • В зависимости от величины наклонения различают остойчивость на малых углах наклонения (начальную остойчивость ) и остойчивость на больших углах наклонения.
  • В зависимости от характера действующих сил различают статическую и динамическую остойчивость.
Статическая остойчивость - рассматривается при действии статических сил, то есть приложенная сила не изменяется по величине. Динамическая остойчивость - рассматривается при действии изменяющихся (т.е. динамических) сил, например ветра, волнения моря, подвижки груза и т.п.

Начальная поперечная остойчивость

Начальная поперечная остойчивость. Система сил, действующих на судно

При крене остойчивость рассматривается как начальная при углах до 10-15°. В этих пределах восстанавливающее усилие пропорционально углу крена и может быть определено при помощи простых линейных зависимостей.

При этом делается допущение, что отклонения от положения равновесия вызываются внешними силами, которые не изменяют ни вес судна, ни положение его центра тяжести (ЦТ). Тогда погруженный объем не изменяется но величине, но изменяется по форме. Равнообъемным наклонениям соответствуют равнообъемные ватерлинии , отсекающие равные по величине погруженные объемы корпуса. Линия пересечения плоскостей ватерлиний называется осью наклонения, которая при равнообъемных наклонениях проходит через центр тяжести площади ватерлинии. При поперечных наклонениях она лежит в диаметральной плоскости.

Свободные поверхности

Все рассмотренные выше случаи предполагают, что центр тяжести судна неподвижен, то есть нет грузов, которые перемещаются при наклонении. Но когда такие грузы есть, их влияние на остойчивость значительно больше остальных.

Типичным случаем являются жидкие грузы (топливо, масло, балластная и котельная вода) в цистернах, заполненных частично, то есть имеющих свободные поверхности . Такие грузы способны переливаться при наклонениях. Если жидкий груз заполняет цистерну полностью, он эквивалентен твердому закрепленному грузу.

Влияние свободной поверхности на остойчивость

Если жидкость заполняет цистерну не полностью, т.е. имеет свободную поверхность, занимающую всегда горизонтальное положение, то при наклонении судна на угол θ жидкость переливается в сторону наклонения. Свободная поверхность примет такой же угол относительно КВЛ.

Уровни жидкого груза отсекают равные по величине объёмы цистерн, т.е. они подобны равнообъёмным ватерлиниям. Поэтому момент, вызываемый переливанием жидкого груза при крене δm θ , можно представить аналогично моменту остойчивости формы m ф, только δm θ противоположно m ф по знаку:

δm θ = - γ ж i x θ,

где i x - момент инерции площади свободной поверхности жидкого груза относительно продольной оси, проходящей через центр тяжести этой площади, γ ж - удельный вес жидкого груза

Тогда восстанавливающий момент при наличии жидкого груза со свободной поверхностью:

m θ1 = m θ + δm θ = Phθ − γ ж i x θ = P(h − γ ж i x /γV)θ = Ph 1 θ,

где h - поперечная метацентрическая высота в отсутствие переливания, h 1 = h − γ ж i x /γV - фактическая поперечная метацентрическая высота.

Влияние переливающегося груза дает поправку к поперечной метацентрической высоте δ h = - γ ж i x /γV

Плотности воды и жидкого груза относительно стабильны, то есть основное влияние на поправку оказывает форма свободной поверхности, точнее ее момент инерции. А значит, на поперечную остойчивость в основном влияет ширина, а на продольную длина свободной поверхности.

Физический смысл отрицательного значения поправки в том, что наличие свободных поверхностей всегда уменьшает

В отличие от статического, динамическое воздействие сил и моментов сообщает судну значительные угловые скорости и ускорения. Поэтому их влияние рассматривается в энергиях , точнее в виде работы сил и моментов, а не в самих усилиях. При этом используется теорема кинетической энергии , согласно которой приращение кинетической энергии наклонения судна равно работе действующих на него сил.

Когда к судну прикладывается кренящий момент m кр , постоянный по величине, оно получает положительное ускорение, с которым начинает крениться. По мере наклонения возрастает восстанавливающий момент, но вначале, до угла θ cт , при котором m кр = m θ , он будет меньше кренящего. По достижении угла статического равновесия θ cт , кинетическая энергия вращательного движения будет максимальной. Поэтому судно не останется в положении равновесия, а за счет кинетической энергии будет крениться дальше, но замедленно, поскольку восстанавливающий момент больше кренящего. Накопленная ранее кинетическая энергия погашается избыточной работой восстанавливающего момента. Как только величина этой работы будет достаточной для полного погашения кинетической энергии, угловая скорость станет равной нулю и судно перестанет крениться.

Наибольший угол наклонения, которое получает судно от динамического момента, называется динамическим углом крена θ дин . В отличие от него угол крена, с которым судно будет плавать под действием того же момента (по условию m кр = m θ ), называется статическим углом крена θ ст .

Если обратиться к диаграмме статической остойчивости, работа выражается площадью под кривой восстанавливающего момента m в . Соответственно, динамический угол крена θ дин можно определить из равенства площадей OAB и BCD , соответствующих избыточной работе восстанавливающего момента. Аналитически та же работа вычисляется как:

,

на интервале от 0 до θ дин .

Достигнув динамического угла крена θ дин , судно не приходит в равновесие, а под действием избыточного восстанавливающего момента начинает ускоренно спрямляться. При отсутствии сопротивления воды судно вошло бы в незатухающие колебания около положения равновесия при крене θ ст Морской словарь - Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Судно, корпус которого при движении поднимается над водой под действием подъёмной силы, создаваемой погруженными в воду крыльями. Патент на С. на п. к. выдан в России в 1891, однако применяться эти суда стали со 2 й половины 20 в.… … Большая советская энциклопедия

Машина повышенной проходимости, способная двигаться как по суше, так и по воде. Автомобиль амфибия имеет увеличенный объём герметизированного кузова, который иногда для лучшей плавучести дополняется навесными поплавками. Передвижение по воде… … Энциклопедия техники

- (малайск.) тип парусного судна, поперечная остойчивость к рого обеспечивается аутригером поплавком, прикрепл. к осн. корпусу поперечными балками. Судно подобно парусному катамарану. В древности П. служили средством сообщения на о вах Тихого… … Большой энциклопедический политехнический словарь

амфибия Энциклопедия «Авиация»

амфибия - (от греч. amphíbios — ведущий двойной образ жизни) — гидросамолёт, оборудованный сухопутным шасси и способный базироваться как на водной поверхности, так и на сухопутных аэродромах. Наиболее распространены А. лодки. Взлёт с воды,… … Энциклопедия «Авиация»

Остойчивость (stability) — одно из важнейших мореходных качеств судна, с которым связаны чрезвычайно важные вопросы, касающиеся безопасности плавания. Утрата остойчивости почти всегда означает гибель судна и очень часто экипажа. В отличие от изменения других мореходных качеств уменьшение остойчивости не проявляется видимым образом, и экипаж судна, как правило, не подозревает о грозящей опасности до последних секунд перед опрокидыванием. Поэтому изучению этого раздела теории корабля необходимо уделять самое большое внимание.

Для того чтобы судно плавало в заданном равновесном положении относи­тельно поверхности воды, оно должно не только удовлетворять условиям рав­новесия, но и быть способным сопротивляться внешним силам, стремящимся вывести его из равновесного положения, а после прекращения действия этих сил — возвращаться в первоначальное положение. Следовательно, равновесие судна должно быть устойчивым или, другими словами, судно должно обладать положительной остойчивостью.

Таким образом, остойчивость — это способность судна, выведенного из состояния равновесия внешними силами, вновь возвращаться к первоначальному положению равновесия после прекращения действия этих сил.

Остойчивость судна связана с его равновесием, которое служит ха­рактеристикой последней. Если равновесие судна устойчивое, то судно обладает положительной остойчивостью; если его равновесие безразличное, то судно обладает нулевой остойчивостью, и, наконец, если равновесие судна неустойчивое, то оно обладает отрицательной остойчивостью.

Танкер Капитан Ширяев

В этой главе будут рассматриваться поперечные наклонения судна в плоскости мидель-шпангоута.

Остойчивость при поперечных наклонениях, т. е. при возникновении крена, называется поперечной. В зависимости от угла наклонения судна поперечная остойчивость делится на остойчивость при малых углах наклонения (до 10-15 град), или так называемую начальную остойчивость, и остойчивость при больших углах наклонения.

Наклонения судна происходят под действием пары сил; момент этой пары сил, вызывающий поворот судна вокруг продольной оси, будем называть кренящим Мкр.

Если Мкр, приложенный к судну, нарастает постепенно от нуля до конечного значения и не вызывает угловых ускорений, а следовательно, и сил инерции, то остойчивость при таком наклонении называется статической.

Кренящий момент, действующий на судно мгновенно, приводит к воз­никновению углового ускорения и инерционных сил. Остойчивость, проявля­ющаяся при таком наклонении, называется динамической.

Статическая остойчивость характеризуется возникновением восста­навливающего момента, который стремится возвратить судно в первоначальное положение равновесия. Динамическая остойчивость характеризуется работой этого момента от начала и до конца его действия.

Рассмотрим равнообъемное поперечное наклонение судна. Будем считать, что в исходном положении судно имеет прямую посадку. В этом случае сила поддержания D’ действует в ДП и приложена в точке С — центре величины судна (Centre of buoyancy-В).

Рис. 1

Допустим, что судно под действием кренящего момента получило поперечное наклонение на малый угол θ. Тогда центр величины переместится из точки С в точку С 1 и сила поддержания, перпендикулярная новой действующей ватерлинии В 1 Л 1 , будет направлена под углом θ к диаметральной плоскости. Линии действия первоначального и нового направлении силы поддержания пересекутся в точке m. Эта точка пересечения линии действия силы поддержания при бесконечно малом равнообъемном наклонении плавающего судна называется поперечным мета центром (metacentre).

Можно дать другое определение метацентру: центр кривизны кривой перемещения центра величины в поперечной плоскости называется поперечным мета центром.

Радиус кривизны кривой перемещения центра величины в поперечной плоскости называется поперечным мета центрическим радиусом (или малым метацентрическим радиусом) (Radius of metacentre). Он опреде­ляется расстоянием от поперечного метацентра m до центра величины С и обозначается буквой r.

Поперечный метацентрический радиус может быть вычислен с помощью формулы:

т. е. поперечный метацентрический радиус равен моменту инерции Ix площади ватерлинии относительно продольной оси, проходящей через центр тяжести этой площади, деленному на соответствующее этой ватерлинии объёмное водоизмещение V.

Условия остойчивости

Допустим, что судно, находящееся в прямом положении равновесия и плавающее по ватерлинию ВЛ, в результате действия внешнего кренящего момента Мкр накренилось так, что исходная ватерлиния ВЛ с новой действующей ватерлинией В 1 Л 1 образует малый угол θ. Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть корпуса, также изменится. Центр величины судна переместится в сторону крена и перейдет из точки С в точку С 1 .

Сила поддержания D’, оставаясь неизменной, будет направлена вертикально вверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m.

Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В 1 Л 1 . Таким образом, силы Р и D’, параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К — основание перпендикуляра, опущенного из точки G на направление действия силы поддержания.

Пара сил, образованная весом судна и силой поддержания, стремящаяся возвратить судно в первоначальное положение равновесия, называется восстанавливающей парой, а момент этой пары — восстанавливающим моментом Мθ.

Вопрос об остойчивости накрененного судна решается направлением действия восстанавливающего момента. Если восстанавливающий момент стремится вернуть судно в первоначальное положение равновесия, то восстанавливающий момент положителен, остойчивость судна также поло­жительна — судно остойчиво. На рис. 2 показано расположение сил, действующих на судно, которое соответствует положительному восста­навливающему моменту. Нетрудно убедиться, что такой момент возникает, если ЦТ лежит ниже метацентра.

Рис. 2 Рис. 3

На рис. 3 показан противоположный случай, когда восстанавливающий момент отрицателен (ЦТ лежит выше метацентра). Он стремится еще больше отклонить судно из положения равновесия, т. к. направление его действия совпадает с направлением действия внешнего кренящего момента Мкр. В этом случае судно не остойчиво.

Теоретически можно допустить, что восстанавливающий момент при наклонении судна равен нулю, т. е. сила веса судна и сила поддержания располагаются на одной вертикали, как это показано на рис. 4.

Рис. 4

Отсутствие восстанавливающего момента приводит к тому, что после прекращения действия кренящего момента судно остается в наклоненном положении, т. е. судно находится в безразличном равновесии.

Таким образом, по взаимному положению поперечного метацентра m и Ц.Т. G можно судить о знаке восстанавливающего момента или, иными словами, об остойчивости судна. Так, если поперечный метацентр находится выше центра тяжести (рис. 2), то судно остойчиво.

Если поперечный метацентр расположен ниже центра тяжести или совпадает с ним (рис. 3, 4) судно не остойчиво.

Отсюда возникает понятие мета центрической высоты (Metacentric height): поперечной метацентрической высотой называется возвышение поперечного метацентра над центром тяжести судна в начальном положении равновесия.

Поперечная метацентрическая высота (рис. 2) определяется расстоянием от центра тяжести (т. G), до поперечного метацентра (т. m), т. е. отрезком mG. Этот отрезок является постоянной величиной, т. к. и Ц.Т. , и поперечный метацентр не изменяют своего положения при малых наклонениях. В связи с этим его удобно принимать в качестве критерия начальной остойчивости судна.

Если поперечный метацентр будет находиться выше центра тяжести судна, то поперечная метацентрическая высота считается положительной. Тогда условие остойчивости судна можно дать в следующей формулировке: судно остойчиво, если его поперечная метацентрическая высота положительна. Такое определение удобно тем, что оно позволяет судить об остойчивости судна, не рассматривая его наклонения, т. е. при угле крена равном нулю, когда восстанавливающий момент вообще отсутствует. Чтобы установить, какими данными необходимо располагать для получения значения поперечной метацентрической высоты, обратимся к рис. 5, на котором показано относительное расположение центра величины С, центра тяжести G и попе­речного метацентра m судна, имеющего положительную начальную поперечную остойчивость.

Рис. 5

Из рисунка видно, что поперечная метацентрическая высота h может быть определена по одной из следующих формул:

h = Z C ± r – Z G ;

h = Z m – Z G .

Поперечная метацентрическая высота определяется зачастую с помощью последнего равенства. Аппликата поперечного метацентра Zm может быть найдена по метацентрической диаграмме. Основные трудности при определении поперечной метацентрической высоты судна возникают при определении аппликаты центра тяжести ZG, определение которой производится с использованием сводной таблицы нагрузки масс судна (вопрос рассматривался в лекции — ).

В иностранной литературе обозначение соответствующих точек и параметров остойчивости может выглядеть так, как указано ниже на рис. 6.

Рис. 6
  • где К – точка киля;
  • В – центр величины (Centre of buoyancy);
  • G — центр тяжести (Centre of gravity);
  • М – поперечный метацентр (metacentre);
  • КВ – аппликата центра величины;
  • KG – аппликата центра тяжести;
  • КМ — аппликата поперечного метацентра;
  • ВМ – поперечный метацентрический радиус (Radius of metacentre);
  • BG – возвышение центра тяжести над центром величины;
  • GM – поперечная метацентрическая высота (Metacentric height).

Плечо статической остойчивости, обозначаемое в на шей литературе как GK, в иностранной литературе обозначается – GZ.

Предлагается к прочтению:

В теории поперечной остойчивости рассматриваются наклонения судна, происходящие в плоскости миделя, причем внешний момент, называемый кренящим моментом, также действует в плоскости миделя.

Не ограничиваясь пока малыми наклонениями судна (они будут рассмотрены как частный случай в разделе «Начальная остойчивость»), рассмотрим общий случай накренения судна от действия постоянного во времени внешнего кренящего момента. На практике такой кренящий момент может возникать, например, от действия постоянного по силе ветра, направление которого совпадает с поперечной плоскостью судна – плоскостью миделя. При воздействием этого кренящего момента судно имеет постоянный крен на противоположный борт, величина которого определяется силой ветра и восстанавливающим моментом со стороны судна.

В литературе по теории судна принято совмещать на рисунке сразу два положения судна – прямое и с креном. Накрененному положению соответствует новое положение ватерлинии относительно судна, которому соответствует постоянный погруженный объем, однако, форма подводной части накрененного судна уже не обладает симметрией: правый борт погружен больше левого (Рис.1).

Все ватерлинии, соответствующие одному значению водоизмещения судна (при постоянном весе судна) принято называть равнообъемными .

Точное изображение на рисунке всех равнообъемных ватерлиний сопряжено с большими сложностями расчетного характера. В теории судна существует несколько методик для графического изображения равнообъемных ватерлиний. При очень малых углах крена (при бесконечно малых равнообъемных наклонениях) можно воспользоваться следствием из теоремы Л. Эйлера, согласно которому две равнообъемные ватерлинии, отличающиеся на бесконечно малый угол крена, пересекаются по прямой, проходящей через их общий центр тяжести площади (при конечных наклонениях это утверждение теряет силу, поскольку каждая ватерлиния имеет свой центр тяжести площади).

Схема образования восстанавливающего момента

Если отвлечься от реального распределения сил веса судна и гидростатического давления, заменив их действие сосредоточенными равнодействующими, то приходим к схеме (Рис.1). В центре тяжести судна приложена сила веса, направленная во всех случаях перпендикулярно к ватерлинии. Параллельно ей действует сила плавучести, приложенная в центре подводного объема судна – в так называемом центре величины (точка С ).

Вследствие того, что поведение (и происхождение) этих сил не зависят друг от друга, они уже не действуют вдоль одной линии, а образуют пару сил, параллельных и перпендикулярных действующей ватерлинии В 1 Л 1 . В отношении силы веса Р можно сказать, что она остается вертикальной и перпендикулярной поверхности воды, а накрененное судно отклоняется от вертикали, и лишь условность рисунка требует отклонять вектор силы веса от диаметральной плоскости. Специфику такого подхода легко себе уяснить, если представить ситуацию с закрепленной на судне видеокамерой, дающей на экране поверхность моря, наклоненную на угол, равный углу крена судна.



Полученная пара сил создаёт момент, который принято называть восстанавливающим моментом . Этот момент противодействует внешнему кренящему моменту и является главным объектом внимания в теории остойчивости.

Величина восстанавливающего момента может быть вычислена по формуле (как для любой пары сил) как произведение одной (любой из двух) силы на расстояние между ними, называемое плечом статической остойчивости :

Формула (1) указывает на то, что и плечо и сам момент зависят от угла крена судна, т.е. представляют собой переменные (в смысле крена) величины.

Однако, не при всех случаях направление восстанавливающего момента будет соответствовать изображению на Рис.1.

Если центр тяжести (в результате особенностей размещения грузов по высоте судна, например, при избытке груза на палубе) оказывается довольно высоко, то может возникнуть ситуация, когда сила веса окажется справа от линии действия силы поддержания. Тогда их момент будет действовать в противоположном направлении и будет способствовать накренению судна. Вместе с внешним кренящим моментом они будут опрокидывать судно, поскольку других противодействующих моментов больше нет.

Ясно, что в этом случае следует оценивать эту ситуацию как недопустимую, т. к. судно остойчивостью не обладает. Следовательно, при высоком положении центра тяжести судно может терять это важное мореходное качество – остойчивость.



На морских водоизмещающих судах возможность осуществлять воздействие на остойчивость судна, «управлять» ею, предоставляется судоводителю только путем рационального размещения грузов и запасов по высоте судна, определяющих положение центра тяжести судна. Как бы то ни было, влияние членов экипажа на положение центра величины исключено, поскольку оно связано с формой подводной части корпуса, которая (при постоянном водоизмещении и осадке судна) неизменна, а при наличии крена судна изменяется без участия человека и зависит только от осадки. Влияние человека на форму корпуса заканчивается на стадии проектирования судна.

Таким образом, очень важное для безопасности судна положение центра тяжести по высоте находится в «сфере влияния» экипажа и требует постоянного контроля посредством специальных вычислений.

Для расчетного контроля наличия у судна «положительной» остойчивости используется понятие метацентра и начальной метацентрической высоты.

Поперечный метацентр – это точка, являющаяся центром кривизны той траектории, по которой центр величины перемещается при накренении судна.

Следовательно, метацентр (так же как и центр величины) является специфической точкой, поведение которой исключительно определяется лишь геометрией формы судна в подводной части и его осадкой.

Положение метацентра, соответствующее посадке судна без крена, принято называтьначальным поперечным метацентром .

Расстояние между центром тяжести судна и начальным метацентром в конкретном варианте загрузки, измеренное в диаметральной плоскости (ДП), называется начальной поперечной метацентрической высотой .

На рисунке видно, что чем ниже располагается центр тяжести по отношению к постоянному (для данной осадки) начальному метацентру, то тем больше будет метацентрическая высота судна, т.е. тем больше оказывается плечо восстанавливающего момента и сам этот момент.

Зависимость плеча восстанавливающего момента от положения центра тяжести судна.

Таким образом, метацентрическая высота является важной характеристикой, служащей для контроля наличия у судна остойчивости. И чем больше её величина, тем больше при тех же углах крена будет величина восстанавливающего момента, т.е. противодействие судна накренению.

При малых накренениях судна метацентр приблизительно находится на месте начального метацентра, поскольку траектория центра величины (точки С ) близка к окружности, и её радиус постоянен. Из треугольника с вершиной в метацентре вытекает полезная формула, справедливая при малых углах крена (θ <10 0 ÷12 0):

где угол крена θ следует использовать в радианах.

Из выражений (1) и (2) легко получить выражение:

которое показывает, что плечо статической остойчивости и метацентрическая высота не зависят от веса судна и его водоизмещения, а представляют собой универсальные характеристики остойчивости, с помощью которых можно сравнивать остойчивость судов разных типов и размеров.

Плечо статической остойчивости

Так для судов с высоким положением центра тяжести (лесовозы) начальная метацентрическая высота принимает значения h 0 ≈ 0 – 0,30 м, для сухогрузных судов h 0 ≈ 0 – 1,20 м, для балкеров, ледоколов, буксиров h 0 > 1,5 ÷ 4,0 м.

Однако, метацентрическая высота отрицательных значений принимать не должна. Формула (1) позволяет сделать другие важные выводы: поскольку порядок величин восстанавливающего момента определяется в основном величиной водоизмещения судна Р , то плечо статической остойчивости является «управляющей величиной», влияющей на диапазон изменения момента М в при данном водоизмещении. И от малейших изменений l (θ) за счет неточностей его вычисления или погрешностей исходной информации (данные, снимаемые с судовых чертежей, либо замеряемые параметры на судне) существенно зависит величина момента М в , определяющего способность судна сопротивляться наклонениям, т.е. определяющего его остойчивость.

Таким образом, начальная метацентрическая высота играет роль универсальной характеристики остойчивости , позволяющей судить о её наличии и величине безотносительно от размеров судна.

Если проследить за механизмом остойчивости при больших углах крена, то проявятся новые особенности восстанавливающего момента.

При произвольных поперечных наклонениях судна кривизна траектории центра величины С изменяется. Эта траектория - уже не окружность с постоянным радиусом кривизны, а является некой плоской кривой, имеющей в каждой своей точке разные значения кривизны и радиуса кривизны. Как правило, этот радиус с креном судна увеличивается и поперечный метацентр (как начало этого радиуса) выходит из диаметральной плоскости и перемещается по своей траектории, отслеживая перемещения центра величины в подводной части судна. При этом, разумеется, само понятие метацентрической высоты становится неприменимым, и лишь восстанавливающий момент (и его плечо l (θ)) остаются единственными характеристиками остойчивости судна при больших наклонениях.

Однако, при этом начальная метацентрическая высота не теряет своей роли быть основополагающей исходной характеристикой остойчивости судна в целом, поскольку от её величины, как от некоего «коэффициента масштаба» зависит порядок величин восстанавливающего момента, т.е. её косвенное влияние на остойчивость судна на больших углах крена сохраняется.

Итак, для контроля остойчивости судна, осуществляемого перед загрузкой, необходимо на первом этапе оценить значение начальной поперечной метацентрической высоты h 0 , пользуясь выражением:

где z G и z M0 – аппликаты центра тяжести и начального поперечного метацентра, соответственно, отсчитываемые от основной плоскости, в которой располагается начало связанной с судном системы координат ОХYZ (Рис. 3).

Выражение (4) одновременно отражает степень участия судоводителя в обеспечении остойчивости. Выбирая и контролируя положение центра тяжести судна по высоте, экипаж обеспечивает остойчивость судна, а все геометрические характеристики, в частности, Z M0 , должны быть предоставлены проектантом в виде графиков от осадки d, называемых кривыми элементов теоретического чертежа .

Дальнейший контроль остойчивости судна производится по методике Морского Регистра судоходства (РС) или по методике Международной Морской Организации (ИМО).

Начальная поперечная метацентрическая высота

Диаграмма статической остойчивости

Плечо восстанавливающего момента l и сам момент М в имеют геометрическую интерпретацию в виде Диаграммы статической остойчивости (ДСО) (Рис.4). ДСО – этографическая зависимость плеча восстанавливающего момента l (θ) или самого момента М в (θ) от угла крена θ .

Этот график, как правило, изображают для крена судна только на правый борт, поскольку вся картина при крене на левый борт для симметричного судна отличается только знаком момента М в (θ).

Значение ДСО в теории остойчивости очень велико: это не только графическая зависимостьМ в (θ); ДСО содержит в себе исчерпывающую информацию о состоянии загрузки судна с точки зрения остойчивости. ДСО судна позволяет решать многие практические задачи в данном рейсе и является отчетным документом для возможности начать загрузку судна и отправку его в рейс.

В качестве свойств ДСО можно отметить следующие:

· ДСО конкретного судна зависит только от взаимного расположения центра тяжести судна G и начального поперечного метацентра m (или значением метацентрической высотой h 0 ) и водоизмещением Р (или осадкой d ср ) и учитывает наличие жидких грузов и запасов с помощью специальных поправок,

· форма корпуса конкретного судна проявляется в ДСО через плечо l (θ), жестко связанное с формой обводов корпуса, которое отражает смещение центра величины С в сторону входящего в воду борта при накренении судна,.

· метацентрическая высота h 0 , вычисленная с учетом влияния жидких грузов и запасов (см. ниже), проявляется на ДСО как тангенс угла наклона касательной к ДСО в точке θ = 0, т.е.:

Для подтверждения правильности построения ДСО на ней делают построение: откладывают угол θ = 1 рад (57,3 0) и строят треугольник с гипотенузой, касательной к ДСО при θ = 0, и горизонтальным катетом θ = 57,3 0 . Вертикальный (противолежащий) катет должен оказаться равным метацентрической высоте h 0 в масштабе оси l (м).

· никакие действия не могут изменить вида ДСО, кроме изменения величин исходных параметров h 0 и Р , поскольку ДСО отражает в каком-то смысле неизменную форму корпуса судна посредством величины l (θ);

· метацентрическая высота h 0 фактически определяет вид и протяженность ДСО.

Угол крена θ = θ 3 , при котором график ДСО пересекает ось абсцисс, называется углом заката ДСО. Угол заката θ 3 определяет только то значение угла крена, при котором сила веса и сила плавучести будут действовать вдоль одной прямой и l (θ 3) = 0. Судить об опрокидывании судна при крене

θ = θ 3 не будет верным, поскольку опрокидывание судна начинается гораздо раньше - вскоре после преодоления максимальной точки ДСО. Точка максимума ДСО (l = l m (θ m)) свидетельствует только о максимальном удалении силы веса от силы поддержания. Однако, максимальное плечо l m и угол максимума θ m являются важными величинами при контроле остойчивости и подлежат проверке на соответствие соответствующим нормативам.

ДСО позволяет решать многие задачи статики судна, например, определять статический угол крена судна при действии на него постоянного (независящего от крена судна) кренящего момента М кр = const. Этот угол крена может быть определен из условия равенства кренящего и восстанавливающего моментов М в (θ) = М кр . Практически эта задача решается как задача по нахождению абсциссы точки пересечения графиков обоих моментов.

Взаимодействие кренящего и восстанавливающего моментов

Диаграмма статической остойчивости отражает возможность судна создавать восстанавливающий момент при наклонении судна. Её вид имеет строго конкретный характер, соответствующий параметрам загрузки судна только в данном рейсе (Р = Р i ,h 0 =h 0i ). Судоводитель, занимающийся на судне вопросами планирования рейса погрузки и расчетами остойчивости, обязан построить конкретную ДСО для двух состояний судна в предстоящем рейсе: с неизменным первоначальным расположением груза и при 100 % и при 10 % судовых запасов.

Чтобы иметь возможность строить диаграммы статической остойчивости при различных сочетаниях водоизмещения и метацентрической высоты, он пользуется вспомогательными графическими материалами, имеющимися в судовой документации по проекту этого судна, например, пантокаренами, либо универсальной диаграммой статической остойчивости.

Пантокарены

Пантокарены поставляются на судно проектировщиком в составе информации об остойчивости и прочности для капитана. Пантокарены представляют собой универсальные графики для данного судна, отражающие форму его корпуса в части остойчивости.

Пантокарены (Рис. 6) изображены в виде серии графиков (при разных углах крена (θ = 10,20,30,….70˚)) в зависимости от веса судна (или его осадки) некоторой части плеча статической остойчивости, называемой плечом остойчивости формы – l ф (Р , θ ).

Пантокарены

Плечо формы - это расстояние, на которое переместится сила плавучести относительно исходного центра величины C ο при крене судна (Рис. 7). Понятно, что это смещение центра величины связано только с формой корпуса и не зависит от положения центра тяжести по высоте. Набор значений плеча формы при разных углах крена (при конкретном весе суднаР=Р i ) снимают с графиков пантокарен (Рис. 6).

Чтобы определить плечи остойчивости l (θ) и построить диаграмму статической остойчивости в предстоящем рейсе необходимо дополнить плечи формы – плечами веса l в , которые легко рассчитать:

Тогда ординаты будущей ДСО получаются по выражению:

Плечи остойчивости формы и веса

Выполнив вычисления для двух состояний нагрузки (Р зап. = 100% и 10%), строят на чистом бланке две ДСО, характеризующих остойчивость судна в этом рейсе. Остается выполнить проверку параметров остойчивости на их соответствие национальным или международным нормативам по остойчивости морских судов.

Существует второй способ построения ДСО, использующий универсальную ДСО данного судна (зависит от наличия на судне конкретных вспомогательных материалов).

Предположим, что судно из исходного положения без крена и дифферента совершает поперечные или продольные равнообъемные наклонения. При этом плоскостью продольных наклонений будет вертикальная плоскость, которая совпадает с ДП, а плоскость поперечных наклонений - вертикальная плоскость, которая совпадает с плоскостью шпангоута, проходящего через ЦВ.

Поперечные наклонения

В прямом положении судна ЦВ находится в ДП (точка С) и линия действия силы плавучести гV также лежит в ДП (рис. 2). При поперечном наклонении судна на угол И изменяется форма погруженного объема, ЦВ перемещается в сторону наклонения из точки С в точку С И и линия действия силы плавучести будет наклонена к ДП под углом И.

Точка пересечения линий действия силы плавучести при бесконечно малом поперечном равнообъемном наклонении судна называется поперечным метацентром (точка m на рис. 2). Радиус кривизны траектории ЦВ r (возвышение поперечного метацентра над ЦВ) называется поперечным метацентрическим радиусом.

В общем случае траектория ЦВ является сложной пространственной кривой и каждому углу наклонения соответствует свое положение метацентра (рис. 3). Однако для малых равнообъемных наклонений с известным приближением можно принять, что траектория

ЦВ лежит в плоскости наклонения и является дугой окружности с центром в точке m. Таким образом, можно считать, что в процессе малого поперечного равнообъемного наклонения судна из прямого положения поперечный метацентр лежит в ДП и своего положения не меняет (r = const).

Рис. 2.

Рис. 3. Перемещение ЦВ при больших наклонениях

Рис. 4.

Выражение для поперечного метацентрического радиуса r получим из условия, что ось малого поперечного равнообъемного наклонения судна лежит в ДП и что при таком наклонении клиновидный объем v как бы переносится с борта, вышедшего из воды, на борт, вошедший в воду (рис. 4).

Согласно известной теореме механики при перемещении тела, принадлежащей системе тел, центр тяжести всей системы перемешается в том же направлении параллельно перемещению тела, причем эти перемещения обратно пропорциональны силам тяжести тела и системы соответственно. Эту теорему можно распространить и на объемы однородных тел. Обозначим:

С С И - перемещение ЦВ (геометрического центра объема V),

b - перемещение геометрического центра клиновидного объема v. Тогда в соответствии с теоремой

откуда: С С И =

Для элемента длины судна dx, полагая, что клиновидный объем имеет в плоскости шпангоута форму треугольника, получим:

или при малом угле

Если by, тогда:

dv b = y 3 И dx.

Интегрируя, получим:

v b = И y 3 dx, или:

где J x = ydx - момент инерции площади ватерлинии относительно продольной центральной оси.

Тогда выражение для перемещения ЦВ будет иметь вид:

Как видно из рис. 5, при малом угле И

Сопоставляя выражения, найдем, что поперечный метацентрический радиус:

Аппликата поперечного метацентра.

Вычисление основных метапараметров
инвариантно к различным судам

Метацентрическая высота - критерий остойчивости судна. Представляет собой возвышение метацентра над центром тяжести плавающего тела. Чем больше этот параметр, тем выше начальная остойчивость судна. При приобретении отрицательного значения метацентрической высоты судно утрачивает способность плавать без крена. Ответить на вопрос «перевернется ли судно, имеющее отрицательную метацентрическую высоту» не представляется возможным, так как метацентрическая теория остойчивости верна лишь при наклонениях судна, не превышающих 10 градусов.

Тем не менее, в Правилах классификационных обществ, осуществляющих надзор за технической эксплуатацией судов (Российский Речной Регистр, Российский Морской Регистр Судоходства и др.), запрещена эксплуатация судов, имеющих метацентрическую высоту менее 0,2 м. Характерным примером тела, имеющего нулевую метацентрическую высоту, является симметричный плавающий бочонок. При нахождении в спокойной воде такой бочонок будет совершать вращение вдоль продольной оси под воздействием любых внешних сил (например ветра).

Силы поддержания D равны (водоизмещению) - весу судна и груза

Силы тяжести судна P равны весу судна и груза (водоизмещению), приложенномув приведенной точке тяжести судна.

Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть
корпуса, также изменится. Центр величины судна переместится в сторонукрена и перейдет из точки С в точку С 1 .Сила поддержания D", оставаясь неизменной, будет направлена вертикальновверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m . Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В 1 Л 1 . Таким образом, силы Р и D", параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К - основание перпендикуляра, опущенного из точки G на направление действия силы поддержания. Пара сил, образованная весом судна и силой поддержания, стремящаясявозвратить судно в первоначальное положение равновесия, называетсявосстанавливающей парой, а момент этой пары - восстанавливающим моментом M θ .


М θ = D" × G К (1).


Плечо GK называют плечом воc станавливающего момента или плечом статического момента и обозначают буквой l ст . Угол между линией действия силы поддержания и ДП равен углу крена θ , поскольку стороны этого угла перпендикулярны к ватерлиниям ВЛ и В 1 Л 1 . С другой стороны, отрезок mG является поперечной метацентрическойвысотой, которая обозначается буквой h . Тогда из прямоугольного треугольника mGK следует:
GK = mG × sin θ = h × sin θ . (2)

Подставив равентсво (2) в (1), находим выражение для восстанавливающего момента M θ при малых углах крена:

М θ = D" × h × sin (3)

При малых углах крена вместо sin θ в формулу (3) можно подставить θ в радианах. Тогда выражение (3) примет вид:

М θ = D" × h × θ (4)

Формулы (3) и (4) являются метацентрическими формулами поперечной остойчивости. Как видно из метацентрической формулы поперечной остойчивости,
восстанавливающий момент пропорционален поперечной метацентрическойвысоте h . Каталось бы, следует стремиться к тому, чтобы судно имело возможно большее h . Однако чрезмерное увеличение h неблагоприятносказывается на характере качки судна - она становится весьмастремительной, что вызывает большие моменты инерции. Это отрицательносказывается на состоянии экипажа, а главное при такой качке большевероятность смещения груза и потеря остойчивости, чем при плавной качке.

ИЗМЕНЕНИЕ ОСТОЙЧИВОСТИ СУДНА ПРИ ПЕРЕМЕЩЕНИИ ГРУЗА ПО ВЕРТИКАЛИ



Допустим, что на судне, сидящем на ровный киль и находящемся в равновесии, перемещен по вертикали груз Р на расстояние l z . Поскольку водоизмещение судна от перемещения груза не меняется, первое условие равновесия будет соблюдено (судно сохранит свою осадку). Согласно известной теореме теоретической механики, Ц.Т. судна переместится в точку G 1 , находящуюся на одной вертикали с прежним положением Ц.Т. судна G. Сама вертикаль пройдет, как и прежде, через Ц.В. судна С. Тем самым будет соблюдено второе условие равновесия, следовательно, при вертикальном перемещении груза судно не изменитсвоего положения равновесия (не появится ни крена ни дифферента). Рассмотрим теперь ичменение начальной поперечной остойчивости. Ввидутого, что форма погруженного в воду корпуса судна и форма площадиватерлинии не изменялись, положение Ц.В. и поперечного метацентра (т. m ) при перемещении груза по вертикали остается неизменным. Перемещаетсятолько Ц.Т. судна из точки G в точку G 1 . Отрезок GG 1 может быть найден с помощью выражения:

GG 1 = (Р × l z ) / D


Если до перемещения груза поперечная метацентрическая высота была h , то после его перемещения она изменится на величину GG 1 . В нашем случае изменение поперечной метацентрической высоты Δh = GG 1 имеет отрицательный знак, т.к. перемещение Ц.Т. судна по направлению кпоперечному метацентру, положение которого, как мы установили, остаетсянеизменным, уменьшает метацентрическую высоту. Следовательно, новое значение поперечной метацентрической высоты будет:
h 1 = h - (Р × l z ) / D (1)

Очевидно, что в случае перемещения груза вниз перед вторым членом правой части уравнения новой метацентрической высоты h 1 , должен быть поставлен знак плюс (+). Из выражения (1) следует, что уменьшение остойчивости суднапропорционально произведению массы груза на его перемещение по высоте.Кроме того, при прочих равных условиях, изменение поперечнойостойчивости будет относительно меньше, у судна с большимводоизмещением, чем у судна с малой силой поддержания D . Поэтому на больших судахперемещение относительно больших грузов безопаснее, чем на малых судах. Может оказаться, что значение GG 1 перемещения вверх Ц.Т. судна будет больше самой величиныh . Тогда начальная поперечнаяостойчивость станет отрицательной, т.е. судно не сможет оставаться впрямом положении.

ОПРЕДЕЛЕНИЕ МЕТАЦЕНТРИЧЕСКОЙ ВЫСОТЫ СУДНА по формуле

h = (P × l y )/(D × tgθ ) = М КР /(D × tgθ )

Затем можно вычислить и аппликату ZG Ц.Т., предварительно определив величину Zm (ось z по направлению ОМ).

Z G = Z m – h

Найдена ошибка для групп (так и не исправили).

Метапараметры для одной поверхности - лодки ФК К-9

(МК: “Мет_высота по формуле.vbs » – без использования метода Met a All )

Схема решения задачи. Также задаем судно по варианту, удаляем из структурылишние объекты, оставляя только Поли-поверхность , делаем ее активнойи обращаемся к МК Мета все

Например для ship 1 получимсначала вывод на экран:

Затем получим изображение самого судно сдифферентом. Метацентр – точка М с. Мета-высота – расстояние М с – G0. Чтобы проверить правильно ли вычислено плечо – расстояние по горизонтали от G0 догоризонтальной прямой Pc – Mc , можно воспользоватьсядиалогом задания окружности.

Видим, что все соответствует

Рс – центр поддерживающей силы смоченнойповерхности (ниже линии погружения).

Чтобыпривести в равновесие судно, надо,чтобы Pc-Мс лежали на одной вертикали. В этот момент получим крен равновесия судна

Метапараметры для одной поверхности - лодки ФК К-9

(МК: “Мет_высота по формуле.vbs » – без использования метода Met a All )

Вращая сферу (справа), расположение центра поддерживающей силы С1 ос тается в том же месте.

Вся сфера:

Центр = (-3.55013e-017, 2.28505e-017, 1.20472e-016)

В группе нет тел

Площадь = 12.5034

Подводная часть (как тело):

Центр = (-0.00942139, -0.695146, -0.000790239)

Объём = 0.573678

В системе Вектор реализованы расчеты для групп. Камнем преткновения были расчеты объемов и ЦТ, в случае преобразования групп. Сейчас эта проблема решена. Одно условие, что поверхность (одна или несколько) должны быть расположены в группе.

Объем групп


Центр = (-0.449362, 0.243291, 0.00259662)

Объём = 14.1873

Расчет ЦТ группы объектов и поддерживающей силы выполняет МК «Объем под водой».


В это случае важно, чтобы поддерживающая сила находилась на одной вертикали с силой веса. В данном случае дифферент будет на корму. Вращая группу против часовой стрелки можно добиться равновесия.

В этом случае группа в равновесие, но с дифферентом на корму в 2.5 градуса

17-я макрокоманда «Мета пример» при заданным дополнительной грузе его ЦТ С2 рассчитывает общий центр тяжести ЦТо и центр силы поддержания С1.

Если C1 и ЦТо , находятся на одной вертикали, значит система уравновешена .

Приведенные три макрокомандыпроверены на всех объектах, которые можно взять в разделе «Готовые макрокоманды».

Чтобы уравновесить систему, надо чтобы С2 находилась под ЦТо . В МК «Мета пример» надо изменить угол поворота системы групп не на -27 градусов, а например -7.


Два контейнера находятся в равновесии
– в таком положении будут находится на плаву


Увеличено: Видим, что С1 по вертикали почти совпадает с ЦТо