Почему осадка судна в море больше. Расчет дифферента и осадок судна. Определение средней осадки судна

Размеры любого судна, в том числе и такого малого, как яхта, характеризуется совокупностью его основных размерений. К ним относятся длина и ширина корпуса, высота бортов и осадка судна. От данных показателей, а также от их пропорционального соотношения во многом зависит его мореходные качества – прежде всего остойчивость и максимальная . В данной статье рассмотрим такое понятие, как , как её рассчитать и от каких факторов зависит выбор осадки лодки.

Понятие «осадка судна»

В кораблестроении термином «осадка» обозначают показатель глубины погружения корпуса корабля в воду. В общепринятом смысле осадка – это расстояние от водной поверхности до самой нижней точки днища судна. Однако, в мореходном деле используется несколько разновидностей понятия «осадка»:

  • Проектная. Представляет собой расчетную осадку, измеренную на ½ длины корпуса судна, и характеризующую расстояние от ватерлинии судна до крайней точки киля. Данный показатель, измеренный по мидель-шпангоуту, в проектно-технической документации, согласно принятым международным стандартам, обозначается латинской буквой «Т».
  • Носовая осадка – показывает глубину погружения носовой части судна. Для её определения на носу крупных судов наносят специальную разметку – носовую марку.
  • Кормовая осадка – нижняя точка погружения кормы в воду. Определяется при помощи нанесённой на корму разметки – кормовой марки.
  • Средняя осадка судна является средним арифметическим вычислением глубины погружения судна в воду. Измеряется по формуле: Тср. = (кормовая осадка + носовая осадка) умноженные на ½.

Глубина осадки судна зависит от нескольких факторов:

  • Массы судна. Согласно законам физики, чем больше масса корабля, тем глубже он будет погружаться в воду.
  • Длины и ширины корпуса. При одинаковой массе меньшую осадку будет иметь судно с более широким и длинным корпусом. Это связано с большей выталкивающей силой воды, действующей на корпус корабля с увеличенной площадью днища.
  • Конструктивных особенностей корпуса. В первую очередь, здесь подразумевается размер киля. А для малых судов – его наличие или отсутствие.

Соответственно, есть величина переменная. Так, показатель максимальной осадки судна зависит от его загрузки: при полной загрузке она будет больше, чем у порожнего судна.

Определение осадки судна

Поскольку является весьма важным показателем, капитану корабля необходимо знать величину осадки в каждый конкретный момент времени. Особенно актуальным это становится при подходе к побережью, входе в порты, проходе каналов и прочих мелководных мест. Неправильный расчет осадки судна в подобной ситуации может привести к катастрофе – посадке корабля на мель со всеми вытекающими отсюда неприятными последствиями.

На больших кораблях, для визуального определения величины погружения корпуса в воду, по обеим сторонам носа и кормы наносят специальные метки. Они идут от нижней точки киля и до главной ватерлинии. Общепринятым в морском флоте считается цена одного деления разметки в 1/10 метра. Однако, в странах с англо-саксонской морской традицией используются обозначения в виде футов и дюймов, где одно деление равно одному футу (примерно 30,5 см). Для простоты различия, метки, нанесённые по метрической системе, нумеруются арабскими цифрами, а по англосаксонской системе – римскими.

Определение осадки судна входит в обязанность помощника капитана либо самого корабля. Определяется она несколькими способами:

  • По специальной диаграмме, называемой «грузовой размер». В ходе исчислений выводится грузовая шкала, которая является основным грузовым документом судов.
  • По показателям кормовой (Тк) и носовой (Тн) осадок находится средняя осадка судна (Тср): Тк х Тн = Тср. Подобная формула справедлива для плавсредств с ровным килем, лишённым изгиба. Для кораблей с изогнутым килем, перед тем, как определить осадку судна, потребуется внести в данную формулу поправки в виде коэффициента изгиба киля. Этот показатель должен быть указан в технической документации корабля.

Соответственно, формула Т к х Т н = Т ср неприемлема и для большинства яхт и лодок, имеющих киль, а также швертботов из-за конструктивной особенности киля. Киль яхты и швертбота представляют собой не выступ в виде балки, проходящей от носа до кормы, а узкий «плавник», выступающий из днища по центру корпуса. В результате осадка килевой яхты по корме или по носу будет значительно, порой в разы, меньше осадки по мидель-шпангоуту.

Яхты с длинной килевой линией, конечно, также бывают, но они составляют лишь небольшую часть от общего числа. Подобная конструкция киля обычно используется на больших океанских мегаяхтах, приближающихся по своим размерам к большим морским судам, а также применялась на тяжёлых яхтах старой постройки.

Расчёт осадки яхты производится ещё на этапе её проектирования, и зависит от ряда показателей – её общей массы, водоизмещения, длины киля, формы обводов корпуса и так далее. Все эти показатели весьма скрупулёзно вычисляются конструкторами и вводятся в специальные формулы, позволяющие получить диаграммы осадки яхты в зависимости от её прочих метрических данных.

Выбор осадки судна

При постройке судна, в первую очередь учитываются условия, в которых оно будет эксплуатироваться. В полной мере это касается и такого показателя, как . Здесь перед конструкторами встаёт дилемма: с одной стороны, требуется сделать судно максимально вместительным и грузоподъёмным, а с другой – позволить ему беспрепятственно заходить в порты и проходить через каналы. От проектировщиков судов требуется найти ту «золотую середину», позволяющую сделать эксплуатацию судна максимально эффективной, с экономической точки зрения.

Например, для крупнотоннажного судна водоизмещением 150-250 тыс.т уменьшение осадки всего на полметра приводит к «потере» от 5 до 10 тыс.т его полезной нагрузки. В то же время — суда со слишком большой осадкой попросту не смогут проходить через такие значимые каналы, как Панамский и Суэцкий. Для примера, глубина фарватера Суэцкого канала составляет 20 м, а Панамского и того меньше – 12 м. Обход же судном Южной Америки и Африки, минуя перечисленные каналы, ставит под вопрос экономическую целесообразность повышение грузоподъёмности за счёт увеличенной осадки.

Конечно, в истории мирового кораблестроения имеются монстры, наподобие супертанкера «Яре Викинг» (длина – 458 м, осадка – ок. 25 м), газовоз «Прелюд», морской трубоукладчик «Пионер Спирит» (осадка – 27 м). Но они были построены для определённых целей, их эксплуатация не требует пересечения ими морских каналов и захода в мелководные порты. Так, супертанкер «Яре Викинг» был специально заказан для перевозки нефти из Персидского залива в Японию, а «Пионер Спирит» — для монтажа трубопроводов в открытом море.

От таких же критериев следует отталкиваться и при выборе яхты с различной осадкой. Выбирая парусник с полноценным килем, следует учитывать, что несмотря на отличную мореходность, на нём будет проблематично подойти к необорудованному побережью. Особенно это актуально для мелких акваторий, где уже за километр от побережья придётся высаживаться с килевой яхты и идти к берегу вброд. Под данное определение вполне подходит Финский залив, значительная часть Каспийского и Азовских морей.

Для плавания в мелких морях и вдоль побережья лучше выбрать швертбот с убирающимся килем. Однако, уходить на нём в открытое море, а тем более пытаться пересечь океан, крайне не рекомендуется. Связано это с гораздо худшими мореходными свойствами швертботов по сравнению с полноценными килевыми яхтами. Плоскодонные лодки имеют самую малую осадку из всех типов судов, поэтому отлично подходят для плавания по внутренним водам – рекам и небольшим озёрам. А вот хождение на плоскодонках по морям крайне опасно из-за их низкой остойчивости.

В мировом торговом флоте принято подразделять суда на типы, которые определяются свойствами перевозимого груза: танкеры, контейнеровозы, газовозы, балкеры, сухогрузы и так далее. Но существует классификация судов по размерам.

Такая классификация учитывает особенности района плавания, а именно глубины в проливах и акваториях портов, габариты шлюзов, условия навигации на искусственных каналах и внутренних водных путях. Собственно навигационная обстановка на океанских и морских путях и есть та причина, по которой размеры судов имеют четкие требования.

Для определения судов по размерам применяется словосочетание, состоящее из двух слов. В первой части используется термин, означающий принадлежность к географическому объекту, во второй части - термин определяет максимальный размер или просто размер.

размер судна Handysize

Хотя не существует официального определения точных терминов тоннажа, к типам судов «Handysize» чаще всего относит балкеры для генеральных грузов, реже - танкеры для нефтепродуктов дедвейтом от 15000 до 50000 тонн. Грузовые суда с размерами больше, чем «Handysize» уже относятся к типу судов «Handymax», а меньше 15000 тонн определения не имеют.

балкер размером Handysize

Суда размером «Handysize» считаются наиболее распространенными и составляют почти 2000 единиц общим дедвейтом около 43000000 тонн. Эти размеры судов являются очень распространенными, поскольку позволяют им входить в небольшие порты, и в большинстве случаев они оснащены кранами, что также позволяет им самостоятельно производить погрузку и разгрузку грузов в портах, в которых отсутствуют погрузочно-разгрузочные системы. В сравнении с большими балкерами, суда размером «Handysize» позволяют выполнять более широкую обработку так называемых «штучных» грузов. К таким относятся: изделия из стали, зерно, руда, фосфаты, цемент, лес, щебень и др.

Суда с размерами «Handysize» в основном строят на судостроительных верфях в Японии, Корее, Китае, Вьетнаме, России, Украины, на Филиппинах и в Индии, а также в некоторых других странах. Наиболее распространенным стандартом в этой категории судов являются балкеры дедвейтом около 32000 тонн и осадкой не более 10 метров. Они имеют пять грузовых трюмов с гидравлическими твиндеками, и четыре тридцатитонных крана для обработки грузов. Некоторые суда типа «Handysize» оснащаются стойками на верхней палубе, между которыми загружаются штабельным способом лес, за что они получили название «лесовозы».

Несмотря на многочисленные заказы судоходных компаний, на новые типы судов , «Handysize» остается самым востребованным, и имеет самый высокий средний возраст среди сухогрузов.

размер судна Handymax

Суда размером «Handymax» или «Supramax» применяются к с дедвейтом от 35000 до 60000 тонн. Суда этого типа имеют в длину 150-200 метров, хотя в некоторых грузовых терминалах, например в Японии, многие суда размеров «Handymax» имеют длину корпуса не более 190 метров. Современные суда этого типа имеет дедвейт от 52000 до 58000 тонн, оборудованы пятью грузовыми трюмами и оснащены четырьмя кранами грузоподъемностью до 30 тонн.

балкер типа Handymax

размер судна Seawaymax

Термин «Seawaymax» относится к размерам судов , которые позволяют им проходить через канал Святого Лаврентия - название водного пути от Монреаля до озера Эри, включая канал Уэлленда и водный путь по Великим озерам из Атлантического океана в Великие озера в Северной Америке.

сухогруз «CSL LAURENTIEN» типа Seawaymax

Суда размером «Seawaymax» имеют длину 226 м, ширину 24 м и осадку 7,92 м. Хотя ширина канала имеет 235 метров грузовые и пассажирские суда больших размеров не могут выйти из Великих Озер в Атлантический океан из-за ограничений по осадке в некоторых местах водного пути. В последние годы дополнительные проблемы судоходству создало понижение уровня воды на Великих озерах. Знаменитый был построен по типу судов «Seawaymax». Он установил рекорд по преодолению водной преграды на канале Святого Лаврентия, пройдя через него с грузом 28502 тонн железной руды, в то время как ежегодный дедвейт водного пути составлял 72351 тонну. В 2006 году не менее 28 судов различных типов были выведены из эксплуатации, из-за своих размеров и были слишком велики, чтобы покинуть Великие озера.

размер судна Aframax

Термин образован из слов обозначающих систему уровня танкеров Average Freight Rate Assessment (AFRA). Суда размером «Aframax» это, как правило, нефтеналивные танкеры с дедвейтом от 80000 тонн до 120000 тонн. Танкеры этого типа широко эксплуатируются в бассейнах Черного моря, Северного моря, Карибского моря, Восточно-Китайского моря и Средиземного моря, так как каналы, проливы и порты, через которые страны-экспортеры не входящие в организацию ОПЕК транспортируют нефть и не способны принимать супертанкеры типа VLCC и ULCC.

танкер «Torben Spirit» типа Aframax

размер судна Suezmax

«Suezmax» является морским термином обозначающий крупный размер судна , способное с полной загрузкой проходить через , и исключительно связан с нефтяными танкерами. Так как Суэцкий канал не имеет шлюзов, единственным серьезным ограничивающим фактором является осадка (максимальная глубина судна ниже ватерлинии). В настоящее время глубина водного пути составляет 16 м. Максимальная высота судов ограничена высотой моста в канале, которая составляет 68 м. Небольшая часть судов ограничена и по ширине канала - максимально допустимая ширина судна составляет 70,1 м.

танкер «CAP GUILLAUME« типа Suezmax

Большинство крупнотоннажных танкеров с учетом этих условий могут проходить по каналу, но некоторым супертанкерам с полной загрузкой не позволяет осадка. Чтобы соответствовать этим параметрам супертанкеры производят отгрузку части своего груза на другое судно или по трубопроводу транспортируется на другой конец канала, где обратно загружается на супертанкер.

Суда с водоизмещением больше 150000 тонн и шире 46 м не могут пройти через Суэцкий канал, поэтому вынуждены продолжить свое , огибая мыс Доброй Надежды на юге Африканского континента.

Руководителем Суэцкого канала адмиралом Ахмед Али Фадель в 2010 году запланировано увеличить глубину водного пути до 22 м, что позволит передвигаться по нему супертанкерам.

размер судна Panamax

Суда классифицированные как «Panamax» имеют максимальные размеры , которые строго соответствуют параметрам , причем определяется размерами шлюзовых камер, а не глубиной водного преграды. Термин «Panamax» является важным фактором при строительстве грузовых судов, и требует максимально точной выдержки указанных размеров.

контейнеровоз типа Panamax

Как уже было сказано выше размеры судов «Panamax» определены главным образом параметрами шлюзовых камер: ширина - 33,53 м, длина - 320 м, высота - 25,9 м. Полезная длина каждой камеры для постановки судна составляет 304,8 м.

На сегодняшний день установлены следующие предельные размеры судов для прохода по каналу: длина - 294,1 м, ширина - 32,3 м, осадка - 12 м, высота от ватерлинии до самой высокой точки судна составляет 57,91 м. Типы судов «Panamax», как правило, имеют водоизмещение около 65000 тонн. Правила прохождения по Панамскому каналу изложены на 60 страницах журнала «Vessel Requirements N-1-2005».

Строительство большого числа такого типа судов создает некоторые проблемы водному пути. Суда размерами «Panamax» требуют высокой точности постановки в шлюзовых камерах, на что уходит больше времени. Кроме того, проводка судов выполняется только в дневное время.

линкор «Missouri» в Панамском канале

В 1945 году была произведена уникальная операция по проводке через Панамский канал огромного «USS Missouri ».

размер судна Post-Panamax

В последнее время от термина «Panamax» образовались новые дефиниции - «Post-Panamax», «NeoPanamax». Супертанкеры, современные контейнеровозы и сухогрузы данного типа длиннее «Panamax» и не могут проходить по каналу. Также через Панамский канал не могут проходить и класса «Nimitz ». Таким образом, назрела настоятельная необходимость, особенно для Соединенных Штатов, очередной реконструкции Панамского канала. В связи с этим 22 октября 2006 года состоялся референдум среди панамских граждан, которые должны были высказать свое мнение по случаю расширения канала. Голосование получило положительные отзывы. Запланированная стоимость реконструкции, которая будет закончена в 2014 году, составит 5,3 миллиарда долларов США. Эта сумма будет возмещена в течение 11 лет.

сухогруз «SHIRANE» типа Post-Panamax

Уже скоро размеры судов «Panamax» будут иметь иные корабли. Новые шлюзы Панамского канала будут иметь параметры: длина - 427 м, ширина - 55 м, допустимая осадка судов - 18,3 м. После расширения, канал сможет принимать контейнеровозы с вместимостью до 12000 ДФЭ. Суда-контейнеровозы с такими параметрами уже получили названия «NeoPanamax».

размер судна Malaccamax

Термин «Malaccamax» относится к нефтеналивным танкерам, транспортирующим сырую нефть из районов Персидского залива в Китай через Малаккский пролив, соединяющий Индийский океан с Южно-Китайским морем. Ограничение вызвано определенными банками, где минимальная глубина составляет 25 метров.

танкер типа Malaccamax

Суда типа «Post-Malaccamax» с размерами большими, чем у «Malaccamax», вынуждены продолжить свой путь в Китай, обходя остров Яву с востока по более глубоководному проливу Ломбока.

контейнеровоз типа Post-Malaccamax

Самым же коротким морским путем для супертанкеров, идущих в Китай и Японию из Европы, Персидского залива и Индии станет скоро канал Кра, строящийся через территорию Малайзии на границе с Бирмой.

Как раз большинство супертанкеров и сухогрузов было построено с учетом прохода через Малаккский пролив. Суда размерами «Malaccamax» соответствуют типу танкеров VLCC.

Также наименование «Malaccamax» будет присвоено будущим контейнеровозам, длина которых будет составлять 470 м, ширина 60 м, осадка 20 м и дедвейтом 300000 тонн для перевозки 18000 контейнеров двадцатифутового эквивалента. Предполагается, что эти будут работать на вышеуказанном водном пути.

размер судна Capesize

Термином «Capesize» обозначаются грузовые суда, которые из-за своих больших размеров не в состоянии пройти через Суэцкий и Панамский каналы. На английском языке слово «cape» означает «мыс» (размер судна «Capesize» больше, чем «Panamax» и «Suezmax»). Таким образом, суда данного типа должны проходить вдоль мыса Доброй Надежды на юге Африканского континента или мыса Горн - самой южной точки материка Южная Америка.

рудовоз типа Capesize

Суда типа «Capesize», как правило, имеют дедвейт свыше 150000 тонн, поэтому основное количество судов данного размера составляют супертанкеры типа VLCC и ULCC, и крупнотоннажные рудовозы со средним дедвейтом 175000 тонн. Однако существуют рудовозы дедвейтом 400000 тонн. Чаще всего термин «Capesize» применяется для балкеров. Естественно, суда таких размеров обрабатываются на специализированных глубоководных терминалах. Экономический рост Китая с его большим спросом на сырье, привел к увеличению спроса на суда размером «Capesize».

РАЗМЕРЫ ТАНКЕРОВ

Нефтяные танкеры также имеют отдельную классификацию по размерам. В 1954 году компания «Shell Oil» разработала систему, по которой можно классифицировать танкеры по размерам, исходя из дедвейта судна:

От 10000 до 24999 тонн - танкер общего назначения;
- от 25000 до 44999 тонн - танкер средних размеров;
- от 45000 до 79999 тонн - танкер типа LR1;
- от 80000 до 159999 тонн - танкер типа LR2;
- от 160000 до 319999 тонн - очень большой танкер (Very Large Crude Carrier - VLCC);
- от 320000 до 549999 тонн - ультра (Ultra Large Crude Carrier - ULCC);

Методика определения веса груза на борту судна методом драфт-сюрвея

После получения судном свободной практики на борт прибывает сюрвейер для проведения драфт-сюрвея.

Целью драфт-сюрвея является определение веса груза на борту судна. Измеряя осадку, используя грузовую документацию судна и информацию по вычислению погруженного объема судна, используя плотность воды, в которой находится судно, сюрвейер может подсчитать вес судна. Из этого общего количества он вычитает вес судна и прочие веса на борту судна, которые не являются весом груза, разница составит вес груза (см. приложенные бланки 1, 2, 3, 4) . Однако на практике надо учесть, что корабль гибок и не находится в состоянии покоя, информация строителей судна о судне варьирует. Очень трудно точно снять осадки, узнать фактический вес балласта.

Время на проведение драфт-сюрвея будет зависить от многих факторов: размеров судна, количества балласта, количества танков, состояния судна. Обычная практика – присутствие сюрвейера от начала до окончания грузовых операций. На больших судах для производства драфт-сюрвея необходимо два сюрвейера.

На точность измерений при драфт-сюрвее влияет обстановка на судне и ограниченность во времени. Незначительные ошибки не повлекут за собой ощутимый ущерб, если судно имеет небольшие габариты. Однако, при перевозке больших партий ценных грузов, 1 % от массы этого груза представляет крупную сумму денег. Сюрвейер должен доказать, что он приложил все усилия для проведения максимально точных измерений, используя стандартные методы. Сюрвейер должен быть уверен в том что делает, и быть в состоянии, насколько это возможно, доказать свою правоту.

1.0. Определение массы груза по осадке судна.

1.1. Снятие осадок судна.

Осадка судна (Т) - глубина, на которую погружен в воду корпус судна. Для снятия значений осадок на носовом и кормовом перпендикулярах (форштевне и ахтерштевне соответственно) с обоих бортов наносятся марки углублений. Марки углублений наносятся также с обоих бортов посередине (на миделе) судна для снятия осадок на миделе.

Марки углублений могут быть обозначены арабскими цифрами и представлены в метрической системе измерения (метры, сантиметры - приложение 1) , а также арабскими или римскими цифрами - английская система измерения (футы, дюймы - приложение 2) .

При метрической системе измерения осадки высота каждой цифры равна 10,0 см, расстояние между цифрами по вертикали также равно 10,0 см, толщина цифры на морских судах 2,0 см, на речных 1,5 см. При английской системе измерения осадки высота каждой цифры равна 1/2 фута (6 дюймов), расстояние между цифрами по вертикали также равно 1/2 фута, толщина цифры 1” (дюйм).

Линия соприкосновения корпуса судна с водой (фактическая ватерлиния) в местах пересечения марок углубления в носовой части судна дает осадку носовой части (Тн), в середине судна – осадку на миделе (Тм), в кормовой части – осадку кормовой части (Тк).

Снятие осадок производится с обоих бортов судна с максимально возможной точностью с причала и/или катера.

При волнении моря необходимо определить среднюю величину амплитуды омывания водой каждой марки углубления, которая и будет являться фактической осадкой судна в данном месте (рис. 1.) :

Фактическая осадка (рис. 1.) составляет: (22’07” + 20’06”) / 2 = 21’06,5”. При невозможности снятия осадки с обоих бортов осадка снимается с марок углубления в носовой части, на миделе и в кормовой части с одного борта.

Для полученных значений осадок рассчитывается средняя осадка (формуле 1) :

где T’ - усредненная осадка, м;

Т - осадка, снятая в носовой, кормовой частях и на миделе, м;

В - поперечное расстояние между марками углубления правого и левого бортов, м;

q - угол крена (снимается с кренометра, находящегося на ходовом мостике судна) бортов судна с максимально возможной точностью с причала, °

(1° крена примерно равен ширине судна).

Знак поправки отрицателен, если крен в сторону наблюдаемого борта, и положителен при противоположном направлении крена. Расчет средней осадки в носовой, кормовой частях и на миделе производится раздельно.

Осадка на миделе может быть определена путем измерения высоты надводного борта от линии главной палубы до зеркала воды, которая затем вычитается из высоты от киля до главной палубы (рис. 2.) :

Определение осадки на миделе


Обозначения к рис. 2. :

1 - линия главной палубы;

2 - ватерлиния;

3 - высота надводного борта до ватерлинии;

4 - осадка до ватерлинии;

5 - осадка до летней грузовой марки;

6 - летний надводный борт;

7 (Н) - высота от киля до главной палубы;

8 - линия киля.

1. 2. Определение средней из средних расчетной осадки, учитывающей поправки к осадке в носовой и кормовой частях судна, а также дифферент и деформацию судна.


Замеры осадки в носовой части судна фиксируются по маркам углублений, нанесенным на форштевне, а не по носовому перпендикуляру, являющемуся расчетной линией. Вследствие этого и появляется ошибка, которая исключается введением поправки (см. рис. 3., формула 5) :

Введение поправки к осадке в носовой и кормовой частях судна и миделе



f - расстояние от форштевня до носового перпендикуляра, м;

LBM = LBP – (f + a) - дифферент - разность осадки судна в носовой и кормовой частях, м;

LBP - расстояние между перпендикулярами, проходящими через точки пересечения грузовой ватерлинии с передней кромкой форштевня и осью баллера руля (расстояние между носовым и кормовым перпендикулярами), м.

При дифференте судна замеры осадки кормовой части судна фиксируются по маркам углублений на ахтерштевне, а не по кормовому перпендикуляру, следовательно, такую же поправку необходимо вводить и для осадки, снятой в кормовой части (формула 6) :


а - расстояние от марок углубления до кормового перпендикуляра, м.

Расстояния а и f могут быть определены с помощью масштабного чертежа судна или чертежа продольного разреза судна.

В большинстве случаев на современных судах имеются таблицы или графики зависимости величины поправок от дифферента.

Осадки носовой и кормовой частей судна с учетом поправок на отклонение штевней рассчитываются по формулам 7, 8 :


Средняя осадка между носовой и кормовой частью судна определяется по формуле 9 :


Поправка к осадке на миделе вводится в случае, если при снятии осадки на миделе шкала углубления смещена в носовую или кормовую часть судна от круга плимсоля (формула 10) :

где диф.’ - дифферент, определенный после введения поправок к осадкам носовой и кормовой частей судна;

m - расстояние от круга плимсоля до марки углубления на миделе, м.

Знак поправки отрицательный при смещении марки углублений в кормовую и положительный при смещении мерки углублений в носовую часть от круга плимсоля.

Осадки на миделе с учетом поправки рассчитываются по формуле 11:

Усредненная осадка рассчитывается по формуле 12 :

Средняя из средних расчетная осадка, учитывающая деформацию судна (изгиб-прогиб), определяется по формуле 13, 14, 14 А :


1. 3. Определение водоизмещения судна.

Весовое водоизмещение – масса судна, равная массе воды, вытесняемой судном. Поскольку водоизмещение судна изменяется в зависимости от степени его загрузки, любому значению осадки (углублению корпуса судна в воду) соответствует определенное водоизмещение.

Полная грузоподъемность судна – дедвейт – определяется следующим образом (формула 15, 16) :


Если принять массу судовых запасов и массу “мертвого” груза неизменными, то масса груза будет равна разнице между дедвейтом судна с грузом (ДВТг) и дедвейта судна до погрузки / после выгрузки (ДВТ0). Определенное таким образом количество груза необходимо уточнить с учетом изменения массы судовых запасов за время производства грузовых операций.

В состав судовых запасов входят:

  • масса топлива и смазочных масел;
  • масса питьевой и технической пресной воды;
  • масса судовых запасов провизии и снабжения (краски, запчасти, т.д.) ;
  • масса судового экипажа с багажом из расчета 1 т багажа на 12 человек.

В состав “мертвого” груза входят масса неоткаченного балласта, остатки воды в танках и т.д.


Водоизмещение судна определяется по грузовой шкале (приложение 3), которая представляет собой чертеж-таблицу, состоящую из ряда шкал с делениями:

  • шкала дедвейта, т;
  • шкала водоизмещения, т;
  • шкала осадки, м и/или футы;
  • шкала моментов дифферента, тм/см;
  • шкала числа тонн на 1 см осадки показывает для конкретной осадки количество груза, которое нужно снять или погрузить для изменения осадки судна на 1 см (может быть выражена в тоннах на дюйм);
  • шкала величины надводного борта, м и/или футы.

При пользовании грузовой шкалой определять значения водоизмещения и дедвейта надо по шкале для пресной воды (g = 1,000), если судно находится в пресной воде, и по шкале для морской воды (g = 1,025), если судно находится в морской воде. Значение показателя числа тонн на 1 см осадки надо снимать с грузовой шкалы только в районе найденной средней осадки.

Водоизмещение (D) определяется до и после погрузки (разгрузки) судна по средней средней расчетной осадке по грузовой шкале, гидростатической таблице (приложение 4) или гидростатической кривой (приложение 5). Обычно водоизмещение указывается для морской воды (r = 1,025 т/м3).

1. 4. Поправки на дифферент судна.

Грузовые гидростатические таблицы или гидростатические кривые, в которых дано водоизмещение при разной осадке, рассчитаны для судна на ровном киле. Истинное водоизмещение судна, имеющего дифферент в кормовую или носовую часть, отличается от водоизмещения, приведенного в грузовой шкале или таблице, следовательно, должны быть применены поправки на дифферент (формулы 18, 19 - если расчеты проводятся в метрической системе; формулы 20, 21 - если расчеты проводятся в английской системе) :


Для этого следует сначала к величине осадки прибавить 50 см (6 дюймов) и снять значение из гидростатических таблиц дифферентирующего момента, а затем вычесть из нее 50 см (6 дюймов) и по этим данным определить значение дифферентующих моментов. Разность между дифферентующими моментами и составит данную величину.

Знак первой поправки получается алгебраически (табл. 1):

Знак второй поправки положительный. Общая поправка на дифферент выражается формулой 22:

Водоизмещение, скорректированное на дифферент, определяется по формуле 23 :

1. 5. Поправка на плотность морской воды.

В тех случаях, когда фактическая плотность воды отличается от принятой (r = 1,025 т/м3), необходимо к откорректированному на дифферент водоизмещению ввести поправку на плотность, замеренную ареометром, гидрометром либо принятую по данным метеослужбы порта.

Отбор образцов морской воды для определения фактической плотности необходимо производить на глубине, соответствующей примерно половине осадки судна и примерно на середине судна. Чтобы получить более точные данные, можно взять образцы также около носовой и кормовой частей судна.

Если при определении плотности воды используется ариометр (гидрометр), калиброванный при температуре 15°С, то фактическая плотность определяется по нижеприведенной табл. 2 по замеренной плотности и фактической температуре воды.

Поправка на плотность воды определяется по формуле 24, 24 А :


Водоизмещение с учетом поправки на плотность морской воды определяется по формуле 25 :

2.0. Определение массы судовых запасов.

До и после погрузки (разгрузки) судна необходимо определить количество переменных запасов, которое необходимо вычесть из водоизмещения, как не относящееся к полезному грузу.

К переменным судовым запасам относятся:

  • топливо (дизельное, мазут) ;
  • смазочное масло;
  • пресная вода (питьевая, техническая) ;
  • балластная вода.

Для определения массы переменных запасов сразу после снятия осадки судна следует проверить все судовые емкости.

Определение количества пресной воды и балласта.

На судне пресная вода может храниться в камбузных и санитарных цистернах, в форпиковой и ахтерпиковой цистернах, в диптанках и днищевых цистернах (котельная вода).

Днищевая часть судна состоит из двойного дна, в котором размещаются междудонные цистерны, предназначенные для балласта. Междудонные цистерны проходят либо по всей ширине судна, либо разделены по оси судна на две симметричные цистерны. Часто междудонные цистерны отделяют друг от друга специальными цистернами, служащими для обеспечения безопасности судна на случай пробоины.

Уровень воды в цистернах замеряется с помощью измерительной ленты (рулетки) через замерные трубки. После определения уровня воды по калибровочным таблицам , имеющимся на судне, определяется количество воды в тоннах или кубических метрах. Если количество воды приводится в единицах объема, то его переводят в тонны, умножая объем на плотность при данной температуре. Измерение количества воды при значительном дифференте требует введения поправки на дифферент по калибровочным таблицам или по расчетам поправки на дифферент методом расчета “клина” (приложение 6) .

Вода на судне может находиться также в льялах (водосборниках корабельных стоков), расположенных вдоль бортов. Перед измерением осадки сточные цистерны должны быть опорожнены.

Определение количества топлива и смазочных масел.

Топливо (дизельное, мазут) находится в днищевых, расходных и отстойных цистернах, а также в диптанках. В машинном отделении находятся небольшие цистерны смазочного масла. Ответственность за измерения количества топлива и смазочного масла несет старший механик, у которого имеются калибровочные таблицы, составленные в тоннах либо в кубических метрах. Данные замеров и расчетов всех запасов сводятся в табл. 3, 3а.

3.0. Время, необходимое для проведения драфт сюрвея.

Для проведения драфт сюрвея на небольшом стандартном судне и получения результативных показателей квалифицированному сюрвейеру потребуется около получаса. Если же это судно больших габаритов, перевозящее навалочные грузы и прибывшее в балласте, для его обработки понадобится не менее четырех часов при участии не менее двух сюрвейеров. Размеры большинства судов средние, их можно поставить между двумя приведенными выше примерами. Многое также зависит от типа судна и участия экипажа.

Существует огромная разница в затратах времени и усилий, необходимых для проведения начального, конечного драфт сюрвея и определения массы груза. Во время начального и конечного драфт сюрвея (до и после погрузки) проводится измерение всех переменных величин - осадки, переменные судовые запасы (балластная и пресная вода, топливо, смазочные материалы, т.д.). Считается, что такой метод помогает исключить ошибки, которые могли возникнуть при определении массы судна порожнем и массы судовых запасов, и дает более точный результат. Замеры балластных танков и снятие осадок проводятся по прибытии судна в порт и по окончании погрузки.

Более простой метод - сюрвей на дедвейт. Он включает в себя измерения осадки и переменных величин только когда судно уже полностью загружено. Он используется в том случае, если судно постоянно осуществляет перевозки определенного рода груза по определенному маршруту, все его переменные величины известны и точно рассчитана корабельная постоянная (константа). Этот метод имеет некоторые другие преимущества помимо экономии времени. Поскольку измерения проводятся при загруженном судне, возможно избежать отклонений, возникающих при измерениях, проводимых на судне с большим дифферентом.

4.0. Точность измерений.

Опытный сюрвейер, работающий в идеальных условиях, проведет измерения с точностью до ± 0,1 - 0,3 % на крупногабаритном судне и с точностью до ± 0,4 - 0,7% на небольшом судне. Если реально смотреть на вещи, идеальные условия для работы практически невозможно обеспечить. Поэтому измерения проводятся с точностью до 0,5% от общей массы груза.

При недостаточно качественных приборах, используемых для снятия замеров, точность измерений будет колебаться в пределах 1%. Ошибки техники могут остаться незамеченными для сюрвейера, а тем более для его работодателя, не имеющего представления о принципе работы данного метода. Даже при использовании самой лучшей техники неблагоприятные погодные условия и отсутствие помощи экипажа может повлиять на точность измерений до 0,5%. Поскольку снятые замеры представляют собой лишь начальную информацию, неточные замеры повлекут за собой ошибки в дальнейших расчетах. Разногласия работы сюрвейера и экипажа, ее несогласованность будут также сказываться на течении драфт сюрвея, как то:

  • пересчет экипажем массы балласта и топлива во время сюрвея;
  • блокировка мерительных трубок;
  • изменение документов;
  • создание других препятствий нормальной работе сюрвейера.

Казалось бы, такие незначительные вещи, происходящие при снятии осадок, как открытие или закрытие трюмов, колебания, вызванные перемещением кранов, могут повлечь за собой существенное изменение дифферента и осадок.

Единственная защита сюрвейера - внимание к мельчайшим деталям, а также ловкость, приобретенная вместе с морским опытом. Подробное изучение планов судна также часто выявляет неточности и ошибки, но так как не каждый план может в точности соответствовать данному судну, делать на основе этого какие-то заключения нужно очень осторожно.

5.0. Осадка.

Первый шаг драфт сюрвея - снятие осадок. Осадка снимется в носовой, кормовой части и на миделе с обоих бортов судна (шесть значений). Сюрвейер должен находиться как можно ближе к воде для снятия более точных показателей осадки. При обработке крупногабаритных судов обязательно использование лодки для снятия осадок с морской стороны. Попытка снятия показателей осадки крупного балкера в балласте с трапа может привести к ошибке до 100 т.

Важно обратить внимание на четкость грузовых марок. На некоторых морских судах грузовые марки нанесены арабскими цифрами (метрическая система измерения) на одном борту и римскими цифрами (английская система измерения - футы) на другом. В этом случае по окончании снятия осадок следует перевести все показания в какую-то одну систему.

Затрудняют снятие осадки колебания воды. Используются специальные мерительные трубки. Внутрь узкой стеклянной трубки проходит вода и, дойдя до определенного уровня, останавливается. Затем по грузовой шкале снимаются показания.

Другой способ снятия осадок с морской стороны - измерение крена судна (если он имеется) специальным прибором - кренометром. Далее с помощью простой тригонометрии высчитываются осадки. Однако точные кренометры - большая редкость, поэтому такой метод применим лишь в совокупности с другим для дальнейшего сопоставления полученных показателей.

Отчет по драфт сюрвею обязательно должен содержать описание погодных условий во время сюрвея. В экстренных случаях лучше отложить проведение сюрвея из-за плохих погодных условий.

Течения и мелководье также затрудняют снятие осадки, значительно меняя ее значения. Если судно движется относительно воды, особенно при наличии небольшого клиренса под килем (расстояние между корпусом судна и грунтом), оно больше погрузиться в воду, увеличив осадку в результате “эффекта присасывания” и изменив дифферент. Экспериментально установлено, что влияние скорости течения до четырех узлов на изменение осадки и дифферента незначительно. Если же скорость течения составляет четыре узла и более, осадка может увеличиться до 6 см в зависимости от формы судна.

Течение представляет действительную проблему для речных причалов. Теоретическая и практическая работа, проведенная для расчета “эффекта присасывания”, недостаточна. Поэтому для сюрвейера существует единственный выбор - полагаться на свой профессиональный опыт.

При ярком солнце и низкой температуре воды прослеживается тенденция судов к выгибу корпуса. Палуба расширяется, а днище судна нет, что приводит к выгибу корпуса судна. Выход из такого положения - специальные методы корректировки помогут избежать ошибок в расчетах.

6.0. Плотность.

Следующий шаг драфт сюрвея после снятия осадок - измерение плотности воды, в которой находится судно. Измерить плотность воды важно сразу по окончании снятия осадок, поскольку она может изменится с приливом, а также с изменением температуры воды. Само понятие “плотность” часто неправильно воспринимается - речь идет о соотношении массы и объема.

Все ошибки при определении плотности воды являются следствием недостаточной практики и непонимания соотношений между различными плотностями. Типичные ошибки следующие:

  • неправильное взятие проб воды;
  • пренебрежение использованием поправок на температуру воды;
  • использование особенных показателей тяжести (плотности) в вакууме вместо использования показателей массы в воздухе.

Оптимальным вариантом определения плотности воды является снятие проб трижды на разной глубине в носовой, кормовой части и на миделе (9 значений). Количество проб может быть меньшим, если судно небольшое или если практика доказывает, что для данного причала плотность воды является постоянной величиной на определенной глубине. Всего должно быть взято проб воды не менее, чем на литр. Затем вода помещается в специальный прозрачный сосуд для тестирования. Это должно быть сделано немедленно, пока сохраняется температура забортной воды.

Нет надобности измерять температуру воды при использовании стеклянного гидрометра. Важно определить значения плотности воды на момент осуществления драфт сюрвея. Применение поправок к плотности, измеренной с помощью гидрометра, приводит к искажению полученных значений. С изменением температуры корпус судна будет расширяться и сжиматься, те же изменения будут происходить и с гидрометром - поэтому вводить поправки к плотности не надо.

Сюрвейер должен убедиться в том, что основание гидрометра и поверхность воды не загрязнены маслом или смазочным веществом. Затем опустить прибор в воду и зафиксировать значение пересечения уровня воды и шкалы прибора. Важно, чтобы глаза находились напротив прибора, а не под углом. Гидрометр должен быть предназначен специально для морской воды.

Значения плотности будут находиться в пределах 0,993 - 1,035 т/м3. Для снятия замеров необходим гидрометр, способный замерить массу в воздухе (очевидная плотность), массу в вакууме (действительная плотность) и особенный показатель тяжести (относительная плотность). Сюрвейеру необходимо определить массу груза в воздухе, поскольку это общепринятая коммерческая масса. Поэтому в расчетах он должен использовать очевидную плотность или массу единицы объема в воздухе.

Единицы измерения обычно кг/л. Если гидрометр предназначен для измерения массы в вакууме или снятия показателя тяжести, применяется поправка 0,0011 гм/мл ее надо вычесть из полученного значения плотности для получения значения массы в воздухе.

Подытоживая, выделим главное для сюрвейера при определении плотности воды:

  • взять нужное количество проб;
  • использовать точный гидрометр;
  • не применять поправок к температуре;
  • определить массу единицы объема в воздухе, кг/л.

7.0. Массы, которые необходимо определить.

После того, как определены значения осадок и плотности воды, устанавливаются значения всех масс, которые затем будет необходимо вычесть из водоизмещения для определения массы груза. Определяется масса судна порожнем, количество балласта, судовых запасов, а также значение корабельной постоянной или судовой константы. На небольшом судне с этой задачей справиться один сюрвейер. Если же это очень крупное судно, ожидающее погрузки или готовящееся к уходу в рейс, сюрвейеру потребуется помощник. В то время как первый будет определять значения осадок и плотности воды, второй будет заниматься обмером судовых танков.

Масса судна порожнем.

Значение массы судна порожнем принимается на веру по информации судна. Если во время начального и конечного драфт сюрвея использовалось одно и то же ошибочное значение массы судна порожнем, это не повлечет за собой ошибку. Если же на начальном драфт сюрвее использовалось одно значение, а на конечном другое, это приведет к ошибке. При проведении сюрвея на дедвейт любая ошибка в определении массы судна порожнем приведет к ошибочному значению массы груза.

Балласт.

Определение количества балласта представляет собой наибольший объем работ. Сюрвейер должен произвести замеры всех балластных танков и определить количество балласта в них. Для этого лучше всего использовать рулетку из стали с маркирующей воду пастой.

Идеально, чтобы судно не имело крена, было на ровном киле, но на практике этого добиться почти невозможно. Крен может быть откорректирован перемещением балласта из одних танков в другие. Однако эта операция займет много времени и может повлечь за собой проблемы, связанные с перекачкой балласта во время сюрвея, что повлияет на его точность. Вводить поправку на крен для каждого балластного танка также трудоемкая операция, которая не потребуется если крен небольшой.

Судно, находящееся в балласте, всегда имеет большой дифферент на корму. Некоторые суда снабжены соответствующими таблицами для корректировки дифферента при проведении расчетов в балластных танках, некоторые - нет. Чтобы избежать расчета поправок на дифферент, многие сюрвейеры настаивают на том, чтобы балластные танки были либо пустые, либо полные во время сюрвея. Сюрвейер, удостоверившись, что часть балластных танков заполнена, проводит замеры оставшихся пустых танков. Эта процедура не займет много времени, она приемлема для небольших танков судов, не имеющих слишком большой дифферент.

Измерения, проводимые в полных балластных танках судна, имеющего большой дифферент, будут представлять собой источник ошибок. Более точными будут измерения в пустых танках, однако остается вероятность существования остатков балластной воды в танках, количество которой невозможно определить.

Измерение балластных трюмов - сложная операция и также является источником возможных ошибок. Трюм должен быть пустым и сухим перед проведением начального драфт сюрвея. Если это невозможно, сюрвейер должен замерить пустоты в разных частях трюма для получения правильного значения глубины, с которым он войдет в калибровочные таблицы.

Осуществив необходимые измерения и получив значения глубины воды в танках, сюрвейер с помощью калибровочных таблиц или путем расчетов переводит эти значения в м. Зная плотность воды в каждом танке, которую он также должен был определить, сюрвейер устанавливает количество воды в танках. Однако определить плотность воды в балластном танке сложно, а верить утверждениям старшего помощника о том, что балласт был принят на борт в открытом море, не достаточно. Ошибка в значении плотности балластной воды для крупных судов может повлечь за собой изменение массы груза до 150 т и более.

Таким образом, сюрвейер должен любым доступным способом взять пробы воды из всех или из нескольких балластных танков и определить ее плотность с помощью того же гидрометра, которым он измерял плотность забортной воды.

Подытоживая, выделим главное для сюрвейера, определяющего количество балласта на борту судна:

  • внимательно ознакомиться с планами расположения балластных танков;
  • произвести замеры балластных танков, используя рулетку из стали с маркирующей воду пастой;
  • определить плотность воды в каждом танке;
  • рассчитать объем, занимаемый водой в каждом танке, применяя необходимые поправки на крен и дифферент;
  • определить количество балластной воды в каждом танке с помощью произведения объема и плотности.

Пресная вода.

Количество пресной воды определяется аналогично количеству балласта. Это менее трудоемкая работа, танков для пресной воды меньше и обычно не требуется определять плотность воды.

Тяжелое и дизельное топливо, смазочные масла.

Если во время стоянки в порту судно не принимало на борт топливо, сюрвейер использует в расчетах величину топлива и смазочных масел, указанную в сертификате качества топлива (Bunker Receipt - см. табл. 3 ). Если судно между начальным и конечным драфт сюрвеем принимало на борт топливо или если проводится сюрвей на дедвейт, сюрвейер должен произвести замеры топливных танков и определить количество топлива и смазочных масел расчетным путем. Расчеты и корректировка на крен и дифферент производятся как для балластных танков. Для топлива и смазочных масел обычно используются значения плотности при 15°С. Для замеров топливных танков целесообразнее было бы использовать специальный гидрометр для топлива, определяющий точное значение плотности. Однако такие гидрометры не используются, поскольку количество топлива и масла не велико, и вероятность ошибки также очень мала. Необходимо помнить, что охлажденное топливо или масло очень медленно перемещается, поэтому если произошло изменение дифферента, можно потратить какое-то время для определения точной глубины жидкости в танке. Замеры пустот в танке в данном случае дадут более точный результат.

Запасы и судовая константа.

Судовая константа вопреки названию величина непостоянная. Она представляет собой разность чистого водоизмещения и величины всех переменных запасов судна (балласт, пресная вода, топливо и смазочные материалы, отстойная вода, т.д.).

Константа включает в себя экипаж судовые запасы, краску, оставшуюся грязь в танках, незначительные расхождения в отметках грузовых марок, неточность определения массы судна порожнем.

Во время начального драфт сюрвея, проводимого на судне в балласте, сюрвейер определяет константу расчетным путем. Для небольшого балкера нормальное значение константы составляет около 250 т. Суда более старой постройки имеют константу большую, чем суда новой постройки. Значение константы будет колебаться с изменением на борту количества закрепляющих материалов, запасов, а также при появлении льда и снега на палубе. За счет этих неопределимых расчетным путем факторов масса судна порожнем может измениться на 60 т.

В некоторых случаях сюрвейер получает отрицательную константу. Обычно это признак ошибки. Однако если после проведения повторных измерений и расчетов константа осталась отрицательной, следует использовать это значение.

Отрицательная константа может получиться по следующим причинам:

  • Смещение грузовой шкалы.
  • Некоторые суда используют калибровочные таблицы для балластных танков и данные по корпусу судна, разработанные для другого судна этого же типа. Однотипные суда немного отличаются друг от друга, однако таблицы используются одни и те же.
  • На некоторых судах причиной значительных ошибок является дифферент, гораздо больший допустимого. Такие суда - своеобразный бич для драфт сюрвейеров. Если старший помощник не сможет предоставить значения константы по предыдущим рейсам в случае получения теоретически недопустимого результата, точность результатов данного драфт сюрвея будет сомнительной.

При проведении сюрвея на дедвейт значение судовой константы сюрвейер либо определяет приблизительно, либо принимает ее значение на веру по информации судна. Отклонение константы от ее действительного значения означает такое же отклонение количества груза от действительного его количества на борту.

Сюрвей на дедвейт часто является более точным, чем полный драфт сюрвей, так как здесь есть возможность избежать ошибок начального драфт сюрвея, связанных с большим дифферентом судна. Замеры осуществляются на загруженном судне, все расчеты проводятся как для судна на ровном киле, что позволяет избежать многих ошибок.

Если судно регулярно обрабатывается, полезно сравнить значения константы за несколько рейсов и определить значение, с которым сюрвей был наиболее точным.

С изменением плотности воды, осадка судна изменяется. При этом с увеличением плотности воды осадка судна уменьшается и, наоборот, с уменьшением плотности осадка увеличивается. Изменение осадки судна от изменения плотности воды можно вычислить по формуле:

Величина, на которую уменьшается осадка судна при переходе из пресной воды в морскую воду с плотностью 1,025 т/м³, называется поправкой на пресную воду , и, как правило, измеряется в миллиметрах. Для каждого судна данная поправка указывается в Судовом свидетельстве о грузовой марке.

Грузовая марка, нанесенная на обоих бортах судна, показывает, какой минимальный надводный борт может иметь судно в морской воде с плотностью 1,025 т/м³. Когда судно грузится в порту с пресной водой, то грузовая марка может быть утоплена на величину равную поправке на пресную воду. При переходе в морскую воду с плотностью 1,025 т/м³ осадка судна уменьшится на величину этой поправки, и судно будет иметь осадку по грузовую марку.

При погрузке в порту, где плотность воды более 1.000 т/м³, но менее чем 1,025 т/м³. величина, на которую может быть утоплена грузовая марка называется поправкой к осадке на плотность воды (по-английски, Dock Water Allowance) и может быть рассчитана по формуле:

Поправка к осадке, рассчитанная по приведенной выше формуле, получается в сантиметрах.

Пример : Осадка судна по грузовую марку 6,25 м. Поправка на пресную воду составляет 255 мм. Плотность воды у причала 1,009 т/м³. Рассчитать, на какую величину может быть увеличена осадка с тем, чтобы с переходом в воду с плотностью 1,025 т/м³. судно имело осадку по грузовую марку.

Порядок вычислений:

1. Вычисляем, на сколько сантиметров может быть утоплена грузовая марка:

Грузовая марка может быть утоплена на 16 сантиметров.

2. Вычисляем среднюю осадку, на которую может быть погружено судно:

При определении весового водоизмещения судна по осадкам, если фактическая плотность воды, в которой находится судно, отличается от плотности воды, для которой рассчитаны грузовая шкала или гидростатические кривые, то поправку к водоизмещению на плотность воды находят по формуле:

Следует отметить, что при понижении или повышении температуры воды, ее плотность изменяется. Следовательно, если судно находится в пресной воде, то необходимо принимать во внимание ее температуру, так как при высокой температуре пресной воды ее плотность ниже 1,000 т/м³. Если этого не учитывать в расчетах, то разница между истинным и рассчитанным водоизмещением может быть весьма значительной.

Таблица плотности пресной воды при различных температурах:

t°C ρ, т/м³ t°C ρ, т/м³ t°C ρ, т/м³
0 0,99987 12 0,99952 24 0,99732
1 0,99993 13 0,99940 25 0,99707
2 0,99997 14 0,99927 26 0,99681
3 0,99999 15 0,99913 27 0,99654
4 1,00000 16 0,99897 28 0,99626
5 0,99999 17 0,99880 29 0,99597
6 0,99997 18 0,99862 30 0,99537
7 0,99993 19 0,99843 31 0,99537
8 0,99988 20 0,99823 32 0,99505
9 0,99981 21 0,99802 33 0,99472
10 0,99973 22 0,99780 34 0,99440
11 0,99963 23 0,99757 35 0,99406

Когда судно находится в морской воде, то поправку на температуру забортной воды не учитывают и необходимо руководствоваться только показаниями ареометра.

Ареометр (Densimeter) - это прибор для измерения плотности жидкости. Современные ареометры, как правило, стеклянные. Шкала измерения градуируется в кг/м³. Значение плотности жидкости считывают по делению шкалы, находящемуся на одном уровне с мениском жидкости, как указано на рисунке 1.

Для измерения используют емкость диаметром не менее 50 мм. Пробы забортной воды необходимо брать с обоих бортов в районе миделя с глубины равной половине осадки судна, как можно быстрее после снятия осадок.

Рис. 1: Определение плотности воды при помощи ареометра

Необходимо отметить, что таким же ареометром измеряют плотность воды в балластных танках, когда определяют количество груза по осадкам. Эта тема подробно рассмотрена в книге серии «Морская практика»: «Расчет массы груза по осадкам».

Расчет дифферента и осадок судна планируемой загрузки

Полученный вариант предварительной загрузки необходимо проверить на дифферент и определить значение осадок судна в носовой и кормовой части.

Дифферент определяется по формуле:

где - весовое водоизмещение судна на среднюю осадку судна, т;

Абсцисса центра величины судна, м;

Абсцисса центра тяжести судна (отстояние центра тяжести груза от миделя судна), м;

Момент, дифферентующий судно на 1 см осадки, тм.

и определяем методом интерполирования по таблицам 17 и 19 приложения 1 методических указаний соответственно.

Ладога, проект 2-85:

Ладога, проект 787:

После определения дифферента необходимо определить осадку судна кормой (в кормовой части судна) и осадку судна носом (в носовой оконечности судна) .

Осадка судна кормой определяется по формуле:

где - средняя осадка судна (осадка на миделе) в пресной воде, м;

Дифферент судна, м;

Абсцисса центра тяжести ватерлинии;

Длина судна, м;

определяется методом интерполирования по таблице 18 приложения методических указаний.

Ладога, проект 2-85:

Ладога, проект 787:

Осадка судна носом определяется по формуле:

Ладога, проект 2-85:

Ладога, проект 787:

Необходимо дифферентовать оба варианта судна (изменить дифферент), так как осадка кормой превышает наименьшую проходную осадку на участках с ограниченными глубинами и возникает невозможность прохода судна через участки с ограниченной глубиной.

Расчет дифферента и осадок судна при фактической загрузке

Оптимальным размещением груза по трюмам является наличие дифферента судна в корму (при разности между носовой и кормовой осадкой в интервале от 0 до -40 см). При наличии дифферента в нос для получения требуемого дифферента рекомендуется переместить некоторое количество груза из одного трюма в другой трюм, в отдельном трюме, а на люковых крышках перераспределить палубный груз. Требуемый дифферент определяется также с учетом расхода судовых запасов.

В течение рейса судна происходит уменьшение судовых запасов (топливо, вода). Поэтому в речных условиях плавания судно необходимо погрузить таким образом, чтобы при проходе мелководных или лимитирующих участков пути дифферент приближался к нулю или же максимальная осадка (осадка судна кормой / носом) при наличии дифферента не превышала проходную осадку на участках с ограниченными глубинами.

Установление окончательного дифферента судна.

Случай 2. Средняя осадка судна после погрузки судна () меньше максимально допустимой осадки в условиях ограниченных глубин на речных участках пути (), т.е. .

Дифферент, необходимый для нормальной посадки судна после погрузки и последующего прохождения участков речного пути с ограниченными глубинами (), может быть установлен следующим образом:

Ладога, проект 2-85:

Ладога, проект 787:

Окончательный дифферент судна должен быть установлен пределах от 0 до (-0,4 м), т.е. судно грузится на ровный киль или с дифферентом на корму.

Корректировка весовых нагрузок для создания необходимой посадки судна.

Установив необходимый дифферент, определяем новую абсциссу центра тяжести системы судно - груз () по формуле:

Ладога, проект 2-85:

Ладога, проект 787:

Отсюда определяем статистический момент нагрузок относительно миделя судна (), необходимый для нормальной посадки судна:

Ладога, проект 2-85:

Ладога, проект 787:

Находим разность между статическим моментом нагрузок относительно миделя по предварительной загрузке судна () и статическим моментом нагрузок относительно миделя (), необходимым для нормальной посадки судна:

Ладога, проект 2-85:

Ладога, проект 787:

На последнем этапе расчета следует обратится к таблице весовых нагрузок, подсчитанной для предварительной загрузки судна.

Следовательно, требуется корректировка таблицы весовых нагрузок, что достигается следующим образом.

Случай 3. Грузовместимость трюмов используется полностью, но груз размещается не только в грузовых трюмах, но и на палубе.

Переместить груз из одних трюмов другие нет возможности, необходимо переместить или недогрузить некоторое количество палубного груза.

Таблица 7. Расчет весовых нагрузок судна Ладога, проект 2-85

Наименование нагрузки

Судно порожнем

Груз в трюме №1

Груз в трюме №2

Груз в трюме №3

Груз в трюме №4

Палубный груз

Топливо и масло

Прочие запасы

Таблица 8. Расчет весовых нагрузок судна Ладога, проект 787

Наименование нагрузки

Судно порожнем

Груз в трюме №1

Груз в трюме №2

Груз в трюме №3

Груз в трюме №4

Палубный груз

Топливо и масло

Прочие запасы

Ладога, проект 2-85:

Ш=(0,92-0,57)*2318,5/100*38,6=0,21 м

2,78 - (0,21)*(0,5*81-0,35)/81=2,68 м

2,78+(0,21)*(0,5*81+0,35)/81=2,88 м.

Ладога, проект 787:

Ш=((-2,45 - (-1,5))*2079,5/9100*49,42)=-0,4 м

2,73 - ((-0,4)*(0,5*82,5+1,38)/82,5=2,94 м

2,73+((-0,4)*(0,5*82,5-1,38)/82,5=0,54 м.